Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Thierry Denoeux
2010 – today
- 2013
[j53]Thierry Denoeux: Maximum Likelihood Estimation from Uncertain Data in the Belief Function Framework. IEEE Trans. Knowl. Data Eng. 25(1): 119-130 (2013)
[c48]Jean-Baptiste Bordes, Franck Davoine, Philippe Xu, Thierry Denoeux: Evidential Grammars for Image Interpretation - Application to Multimodal Traffic Scene Understanding. IUKM 2013: 65-78- 2012
[j52]Thierry Denoeux, Marie-Hélène Masson: Evidential reasoning in large partially ordered sets - Application to multi-label classification, ensemble clustering and preference aggregation. Annals OR 195(1): 135-161 (2012)
[j51]V. Antoine, Benjamin Quost, Marie-Hélène Masson, Thierry Denoeux: CECM: Constrained evidential C-means algorithm. Computational Statistics & Data Analysis 56(4): 894-914 (2012)
[j50]Frédéric Pichon, Didier Dubois, Thierry Denoeux: Relevance and truthfulness in information correction and fusion. Int. J. Approx. Reasoning 53(2): 159-175 (2012)
[j49]Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin: Fault diagnosis of a railway device using semi-supervised independent factor analysis with mixing constraints. Pattern Anal. Appl. 15(3): 313-326 (2012)
[j48]Zohra Leila Cherfi, Latifa Oukhellou, Etienne Côme, Thierry Denoeux, Patrice Aknin: Partially supervised Independent Factor Analysis using soft labels elicited from multiple experts: application to railway track circuit diagnosis. Soft Comput. 16(5): 741-754 (2012)
[c47]Sawsan Kanj, Fahed Abdallah, Thierry Denoeux: Evidential Multi-label Classification Using the Random k-Label Sets Approach. Belief Functions 2012: 21-28
[c46]Nicolas Sutton-Charani, Sébastien Destercke, Thierry Denoeux: Classification Trees Based on Belief Functions. Belief Functions 2012: 77-84
[c45]Marie-Hélène Masson, Thierry Denoeux: Ranking from Pairwise Comparisons in the Belief Functions Framework. Belief Functions 2012: 311-318
[c44]Nicole El Zoghby, Véronique Cherfaoui, Bertrand Ducourthial, Thierry Denoeux: Distributed Data Fusion for Detecting Sybil Attacks in VANETs. Belief Functions 2012: 351-358
[c43]Emmanuel Ramasso, Thierry Denoeux, Noureddine Zerhouni: Partially-Hidden Markov Models. Belief Functions 2012: 359-366
[c42]Didier Dubois, Thierry Denoeux: Conditioning in Dempster-Shafer Theory: Prediction vs. Revision. Belief Functions 2012: 385-392
[c41]Nadia Ben Abdallah, Nassima Mouhous Voyneau, Thierry Denoeux: Combining Statistical and Expert Evidence within the D-S Framework: Application to Hydrological Return Level Estimation. Belief Functions 2012: 393-400
[c40]Sawsan Kanj, Fahed Abdallah, Thierry Denoeux: Purifying training data to improve performance of multi-label classification algorithms. FUSION 2012: 1784-1791
[c39]Rui Jorge Almeida, Thierry Denoeux, Uzay Kaymak: Constructing Rule-Based Models Using the Belief Functions Framework. IPMU (3) 2012: 554-563
[c38]Bertrand Ducourthial, Véronique Cherfaoui, Thierry Denoeux: Self-stabilizing Distributed Data Fusion. SSS 2012: 148-162
[e1]Thierry Denoeux, Marie-Hélène Masson (Eds.): Belief Functions: Theory and Applications - Proceedings of the 2nd International Conference on Belief Functions, Compiègne, France, 9-11 May 2012. Advances in Soft Computing 164, Springer 2012, ISBN 978-3-642-29460-0- 2011
[j47]Zoulficar Younes, Fahed Abdallah, Thierry Denoeux, Hichem Snoussi: A Dependent Multilabel Classification Method Derived from the k-Nearest Neighbor Rule. EURASIP J. Adv. Sig. Proc. 2011 (2011)
[j46]Thierry Denoeux: Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets and Systems 183(1): 72-91 (2011)
[j45]Marie-Hélène Masson, Thierry Denoeux: Ensemble clustering in the belief functions framework. Int. J. Approx. Reasoning 52(1): 92-109 (2011)
[j44]Benjamin Quost, Marie-Hélène Masson, Thierry Denoeux: Classifier fusion in the Dempster-Shafer framework using optimized t-norm based combination rules. Int. J. Approx. Reasoning 52(3): 353-374 (2011)
[j43]Fahed Abdallah, Ghalia Nassreddine, Thierry Denoeux: A Multiple-Hypothesis Map-Matching Method Suitable for Weighted and Box-Shaped State Estimation for Localization. IEEE Transactions on Intelligent Transportation Systems 12(4): 1495-1510 (2011)
[c37]Latifa Oukhellou, Etienne Côme, Patrice Aknin, Thierry Denoeux: Semi-supervised Feature Extraction Using Independent Factor Analysis. ICMLA (2) 2011: 330-333
[c36]Zohra Leila Cherfi, Latifa Oukhellou, Etienne Côme, Thierry Denoeux, Patrice Aknin: Using Imprecise and Uncertain Information to Enhance the Diagnosis of a Railway Device. NL-MUA 2011: 213-220- 2010
[j42]Thierry Denoeux, Zoulficar Younes, Fahed Abdallah: Representing uncertainty on set-valued variables using belief functions. Artif. Intell. 174(7-8): 479-499 (2010)
[j41]Latifa Oukhellou, Alexandra Debiolles, Thierry Denoeux, Patrice Aknin: Fault diagnosis in railway track circuits using Dempster-Shafer classifier fusion. Eng. Appl. of AI 23(1): 117-128 (2010)
[j40]Frédéric Pichon, Thierry Denoeux: The Unnormalized Dempster's Rule of Combination: A New Justification from the Least Commitment Principle and Some Extensions. J. Autom. Reasoning 45(1): 61-87 (2010)
[j39]Ghalia Nassreddine, Fahed Abdallah, Thierry Denoeux: State Estimation Using Interval Analysis and Belief-Function Theory: Application to Dynamic Vehicle Localization. IEEE Transactions on Systems, Man, and Cybernetics, Part B 40(5): 1205-1218 (2010)
[c35]Violaine Antoine, Benjamin Quost, Marie-Hélène Masson, Thierry Denoeux: CECM: Adding pairwise constraints to evidential clustering. FUZZ-IEEE 2010: 1-8
[c34]Zoulficar Younes, Fahed Abdallah, Thierry Denoeux: Fuzzy multi-label learning under veristic variables. FUZZ-IEEE 2010: 1-8
[c33]Zoulficar Younes, Fahed Abdallah, Thierry Denoeux: Evidential Multi-Label Classification Approach to Learning from Data with Imprecise Labels. IPMU 2010: 119-128
[c32]Thierry Denoeux: Theory of Belief Functions for Data Analysis and Machine Learning Applications: Review and Prospects. KSEM 2010: 3
[c31]Benjamin Quost, Thierry Denoeux: Clustering Fuzzy Data Using the Fuzzy EM Algorithm. SUM 2010: 333-346
2000 – 2009
- 2009
[j38]David Mercier, Genevieve Cron, Thierry Denoeux, Marie-Hélène Masson: Decision fusion for postal address recognition using belief functions. Expert Syst. Appl. 36(3): 5643-5653 (2009)
[j37]Thierry Denoeux: Extending stochastic ordering to belief functions on the real line. Inf. Sci. 179(9): 1362-1376 (2009)
[j36]Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin: Learning from partially supervised data using mixture models and belief functions. Pattern Recognition 42(3): 334-348 (2009)
[j35]Marie-Hélène Masson, Thierry Denoeux: RECM: Relational evidential c-means algorithm. Pattern Recognition Letters 30(11): 1015-1026 (2009)
[c30]
[c29]Etienne Côme, Latifa Oukhellou, Patrice Aknin, Thierry Denoeux: Partially-supervised learning in Independent Factor Analysis. ESANN 2009
[c28]Krystyna Biletska, Sophie Midenet, Marie-Hélène Masson, Thierry Denoeux: Fuzzy Modelling of Sensor Data for the Estimation of an Origin-Destination Matrix. IFSA/EUSFLAT Conf. 2009: 849-854
[c27]Ghalia Nassreddine, Fahed Abdallah, Thierry Denoeux: A state estimation method for multiple model systems using belief function theory. FUSION 2009: 506-513
[c26]Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin: Noiseless Independent Factor Analysis with Mixing Constraints in a Semi-supervised Framework. Application to Railway Device Fault Diagnosis. ICANN (2) 2009: 416-425
[c25]Benjamin Quost, Thierry Denoeux: Learning from data with uncertain labels by boosting credal classifiers. KDD Workshop on Knowledge Discovery from Uncertain Data 2009: 38-47
[c24]Krystyna Biletska, Marie-Hélène Masson, Sophie Midenet, Thierry Denoeux: Multisensor data fusion for OD matrix estimation. SMC 2009: 3024-3029
[c23]Zoulficar Younes, Fahed Abdallah, Thierry Denoeux: An Evidence-Theoretic k-Nearest Neighbor Rule for Multi-label Classification. SUM 2009: 297-308- 2008
[j34]Thierry Denoeux: Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence. Artif. Intell. 172(2-3): 234-264 (2008)
[j33]Thierry Denoeux: Special issue in memory of Philippe Smets (1938-2005). Int. J. Approx. Reasoning 48(2): 349-351 (2008)
[j32]Astride Aregui, Thierry Denoeux: Constructing consonant belief functions from sample data using confidence sets of pignistic probabilities. Int. J. Approx. Reasoning 49(3): 575-594 (2008)
[j31]David Mercier, Benjamin Quost, Thierry Denoeux: Refined modeling of sensor reliability in the belief function framework using contextual discounting. Information Fusion 9(2): 246-258 (2008)
[j30]Marie-Hélène Masson, Thierry Denoeux: ECM: An evidential version of the fuzzy c. Pattern Recognition 41(4): 1384-1397 (2008)
[c22]Frédéric Pichon, Thierry Denoeux: A New Justification of the Unnormalized Dempster's Rule of Combination from the Least Commitment Principle. FLAIRS Conference 2008: 666-671
[c21]Véronique Cherfaoui, Thierry Denoeux, Zohra Leila Cherfi: Distributed data fusion: application to confidence management in vehicular networks. FUSION 2008: 1-8
[c20]Ghalia Nassreddine, Fahed Abdallah, Thierry Denoeux: Map matching algorithm using belief function theory. FUSION 2008: 1-8
[c19]Benjamin Quost, Marie-Hélène Masson, Thierry Denoeux: Refined classifier combination using belief functions. FUSION 2008: 1-7
[c18]Etienne Côme, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin: Mixture Model Estimation with Soft Labels. SMPS 2008: 165-174
[p1]Thierry Denoeux: A k -Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory. Classic Works of the Dempster-Shafer Theory of Belief Functions 2008: 737-760- 2007
[j29]Benjamin Quost, Thierry Denoeux, Marie-Hélène Masson: Pairwise classifier combination using belief functions. Pattern Recognition Letters 28(5): 644-653 (2007)
[c17]Thierry Denoeux: Pattern Recognition and Information Fusion Using Belief Functions: Some Recent Developments. ECSQARU 2007: 1
[c16]Astride Aregui, Thierry Denoeux: Consonant Belief Function Induced by a Confidence Set of Pignistic Probabilities. ECSQARU 2007: 344-355
[c15]
[c14]Astride Aregui, Thierry Denoeux: Fusion of one-class classifiers in the belief function framework. FUSION 2007: 1-8- 2006
[j28]Pierre-Alexandre Hébert, Marie-Hélène Masson, Thierry Denoeux: Fuzzy multidimensional scaling. Computational Statistics & Data Analysis 51(1): 335-359 (2006)
[j27]Marie-Hélène Masson, Thierry Denoeux: Inferring a possibility distribution from empirical data. Fuzzy Sets and Systems 157(3): 319-340 (2006)
[j26]Hugues Bersini, Thierry Denoeux, Didier Dubois, Henri Prade: In Memoriam: Philippe Smets (1938-2005). Fuzzy Sets and Systems 157(8) (2006)
[j25]Hugues Bersini, Thierry Denoeux, Didier Dubois, Henri Prade: Philippe Smets (1938-2005). Int. J. Approx. Reasoning 41(3) (2006)
[j24]Thierry Denoeux: Constructing belief functions from sample data using multinomial confidence regions. Int. J. Approx. Reasoning 42(3): 228-252 (2006)
[c13]Alexandra Debiolles, Latifa Oukhellou, Thierry Denoeux, Patrice Aknin: Output coding of spatially dependent subclassifiers in evidential framework. Application to the diagnosis of railway track/vehicle transmission system. FUSION 2006: 1-6
[c12]Thierry Denoeux: The cautious rule of combination for belief functions and some extensions. FUSION 2006: 1-8
[c11]David Mercier, Thierry Denoeux, Marie-Hélène Masson: General Correction Mechanisms for Weakening or Reinforcing Belief Functions. FUSION 2006: 1-7- 2005
[j23]Thierry Denoeux: R. P. Srivastava and T. J. Mock, Belief Functions in Business Decisions, in Studies in Fuzziness and Soft Computing, vol. 88, Physica-Verlag, Heidelberg (2002) ISBN 3-7908-1451-2 (345pp.). Fuzzy Sets and Systems 151(2): 435-436 (2005)
[j22]Thierry Denoeux, Marie-Hélène Masson, Pierre-Alexandre Hébert: Nonparametric rank-based statistics and significance tests for fuzzy data. Fuzzy Sets and Systems 153(1): 1-28 (2005)
[j21]
[c10]David Mercier, Benjamin Quost, Thierry Denoeux: Contextual Discounting of Belief Functions. ECSQARU 2005: 552-562- 2004
[j20]Simon Petit-Renaud, Thierry Denoeux: Nonparametric regression analysis of uncertain and imprecise data using belief functions. Int. J. Approx. Reasoning 35(1): 1-28 (2004)
[j19]Marie-Hélène Masson, Thierry Denoeux: Clustering interval-valued proximity data using belief functions. Pattern Recognition Letters 25(2): 163-171 (2004)
[j18]Thierry Denoeux, Marie-Hélène Masson: Principal component analysis of fuzzy data using autoassociative neural networks. IEEE T. Fuzzy Systems 12(3): 336-349 (2004)
[j17]Thierry Denoeux, Marie-Hélène Masson: EVCLUS: evidential clustering of proximity data. IEEE Transactions on Systems, Man, and Cybernetics, Part B 34(1): 95-109 (2004)
[c9]Sandro Glaucio Maquiné de Souza, Thierry Denoeux, Yves Grandvalet: Recycling experiments for sludge monitoring in waste water treatment. SMC (2) 2004: 1342-1347- 2003
[j16]Jérémie François, Yves Grandvalet, Thierry Denoeux, Jean-Michel Roger: Resample and combine: an approach to improving uncertainty representation in evidential pattern classification. Information Fusion 4(2): 75-85 (2003)
[j15]Jérémie François, Yves Grandvalet, Thierry Denoeux, Jean-Michel Roger: Addendum to resample and combine: an approach to improving uncertainty representation in evidential pattern classification. Information Fusion 4(3): 235-236 (2003)
[c8]Sabrina Démotier, Thierry Denoeux, Paul Walter Schön: Risk Assessment in Drinking Water Production Using Belief Functions. ECSQARU 2003: 319-331
[c7]Sabrina Démotier, Paul Walter Schön, Thierry Denoeux, Khaled Odeh: A new approach to assess risk in water treatment using the belief function framework. SMC 2003: 1792-1797- 2002
[j14]Marie-Hélène Masson, Thierry Denoeux: Multidimensional scaling of fuzzy dissimilarity data. Fuzzy Sets and Systems 128(3): 339-352 (2002)
[j13]Thierry Denoeux, Amel Ben Yaghlane: Approximating the combination of belief functions using the fast Mo"bius transform in a coarsened frame. Int. J. Approx. Reasoning 31(1-2): 77-101 (2002)- 2001
[j12]Thierry Denoeux, Lalla Merieme Zouhal: Handling possibilistic labels in pattern classification using evidential reasoning. Fuzzy Sets and Systems 122(3): 409-424 (2001)
[j11]Nicolas Valentin, Thierry Denoeux: A neural network-based software sensor for coagulation control in a water treatment plant. Intell. Data Anal. 5(1): 23-39 (2001)
[j10]Thierry Denoeux: Inner and Outer Approximation of Belief Structures Using a Hierarchical Clustering Approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9(4): 437-460 (2001)
[c6]Amel Ben Yaghlane, Thierry Denoeux, Khaled Mellouli: Coarsening Approximations of Belief Functions. ECSQARU 2001: 362-373
[c5]Patrick Vannoorenberghe, Thierry Denoeux: Likelihood-based Vs Distance-based Evidential Classifiers. FUZZ-IEEE 2001: 320-323- 2000
[j9]Thierry Denoeux, Marie-Hélène Masson: Multidimensional scaling of interval-valued dissimilarity data. Pattern Recognition Letters 21(1): 83-92 (2000)
[j8]Thierry Denoeux: A neural network classifier based on Dempster-Shafer theory. IEEE Transactions on Systems, Man, and Cybernetics, Part A 30(2): 131-150 (2000)
1990 – 1999
- 1999
[j7]Thierry Denoeux: Reasoning with imprecise belief structures. Int. J. Approx. Reasoning 20(1): 79-111 (1999)
[c4]Simon Petit-Renaud, Thierry Denoeux: Handling Different Forms of Uncertainty in Regression Analysis: A Fuzzy Belief Structure Approach. ESCQARU 1999: 340-351
[c3]Michèle Rombaut, Iman Jarkass, Thierry Denoeux: State Recognition in Discrete Dynamical Systems Using Petri Nets and Evidence Theory. ESCQARU 1999: 352-361- 1998
[j6]Lalla Merieme Zouhal, Thierry Denoeux: An evidence-theoretic k-NN rule with parameter optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C 28(2): 263-271 (1998)- 1997
[j5]Thierry Denoeux: Analysis of evidence-theoretic decision rules for pattern classification. Pattern Recognition 30(7): 1095-1107 (1997)- 1996
[j4]Régis Lengellé, Thierry Denoeux: Training MLPs layer by layer using an objective function for internal representations. Neural Networks 9(1): 83-97 (1996)- 1995
[j3]Thierry Denoeux, P. Rizand: Analysis of Rainfall Forecasting using Neural Networks. Neural Computing and Applications 3(1): 50-61 (1995)
[j2]Thierry Denoeux: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Transactions on Systems, Man, and Cybernetics 25(5): 804-813 (1995)
[c2]Lalla Merieme Zouhal, Thierry Denoeux: An Adaptive k-NN Rule Based on Dempster-Shafer Theory. CAIP 1995: 310-317
[c1]Mohamed Karouia, Régis Lengellé, Thierry Denoeux: Performance analysis of a MLP weight initialization algorithm. ESANN 1995- 1993
[j1]Thierry Denoeux, Régis Lengellé: Initializing back propagation networks with prototypes. Neural Networks 6(3): 351-363 (1993)
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 10:56 CEST by the dblp team



