Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Pavel Brazdil
2010 – today
- 2013
[c40]- 2012
[c39]Rui Leite, Pavel Brazdil, Joaquin Vanschoren: Selecting Classification Algorithms with Active Testing. MLDM 2012: 117-131
[c38]Luís Moreira-Matias, João Mendes-Moreira, João Gama, Pavel Brazdil: Text Categorization Using an Ensemble Classifier Based on a Mean Co-association Matrix. MLDM 2012: 525-539- 2010
[c37]Gintare Grigonyte, João Cordeiro, Gaël Dias, Rumen Moraliyski, Pavel Brazdil: Paraphrase Alignment for Synonym Evidence Discovery. COLING 2010: 403-411
[c36]
[p3]Ricardo Vilalta, Christophe G. Giraud-Carrier, Pavel Brazdil: Meta-Learning - Concepts and Techniques. Data Mining and Knowledge Discovery Handbook 2010: 717-731
[p2]Pavel Brazdil, Rui Leite: Determining the Best Classification Algorithm with Recourse to Sampling and Metalearning. Advances in Machine Learning I 2010: 173-188
[r3]Ricardo Vilalta, Christophe G. Giraud-Carrier, Pavel Brazdil, Carlos Soares: Inductive Transfer. Encyclopedia of Machine Learning 2010: 545-548
[r2]Pavel Brazdil, Ricardo Vilalta, Christophe G. Giraud-Carrier, Carlos Soares: Metalearning. Encyclopedia of Machine Learning 2010: 662-666
2000 – 2009
- 2009
[b1]Pavel Brazdil, Christophe G. Giraud-Carrier, Carlos Soares, Ricardo Vilalta: Metalearning - Applications to Data Mining. Cognitive Technologies, Springer 2009, ISBN 978-3-540-73262-4, pp. I-X, 1-176
[e5]João Gama, Vítor Santos Costa, Alípio Mário Jorge, Pavel Brazdil (Eds.): Discovery Science, 12th International Conference, DS 2009, Porto, Portugal, October 3-5, 2009. Lecture Notes in Computer Science 5808, Springer 2009, ISBN 978-3-642-04746-6
[r1]Christophe G. Giraud-Carrier, Pavel Brazdil, Carlos Soares, Ricardo Vilalta: Meta-Learning. Encyclopedia of Data Warehousing and Mining 2009: 1207-1215- 2007
[j8]João Cordeiro, Gaël Dias, Pavel Brazdil: New Functions for Unsupervised Asymmetrical Paraphrase Detection. JSW 2(4): 12-23 (2007)
[c35]Alberto Freitas, Altamiro da Costa Pereira, Pavel Brazdil: Cost-Sensitive Decision Trees Applied to Medical Data. DaWaK 2007: 303-312
[c34]Rui Leite, Pavel Brazdil: An Iterative Process for Building Learning Curves and Predicting Relative Performance of Classifiers. EPIA Workshops 2007: 87-98
[c33]João Cordeiro, Gaël Dias, Pavel Brazdil: Learning Paraphrases from WNS Corpora. FLAIRS Conference 2007: 193-198
[c32]Fabrice Colas, Pavel Paclík, Joost N. Kok, Pavel Brazdil: Does SVM Really Scale Up to Large Bag of Words Feature Spaces? IDA 2007: 296-307- 2006
[c31]Fabrice Colas, Pavel Brazdil: Comparison of SVM and Some Older Classification Algorithms in Text Classification Tasks. IFIP AI 2006: 169-178
[c30]Pedro Campos, Pavel Brazdil, Paula Brito: Organizational Survival In Cooperation Networks: The Case Of Automobile Manufacturing. PRO-VE 2006: 77-84
[c29]Carlos Soares, Pavel Brazdil: Selecting parameters of SVM using meta-learning and kernel matrix-based meta-features. SAC 2006: 564-568
[c28]Fabrice Colas, Pavel Brazdil: On the Behavior of SVM and Some Older Algorithms in Binary Text Classification Tasks. TSD 2006: 45-52- 2005
[c27]
[p1]Ricardo Vilalta, Christophe G. Giraud-Carrier, Pavel Brazdil: Meta-Learning. The Data Mining and Knowledge Discovery Handbook 2005: 731-748
[e4]João Gama, Rui Camacho, Pavel Brazdil, Alípio Jorge, Luís Torgo (Eds.): Machine Learning: ECML 2005, 16th European Conference on Machine Learning, Porto, Portugal, October 3-7, 2005, Proceedings. Lecture Notes in Computer Science 3720, Springer 2005, ISBN 3-540-29243-8
[e3]Alípio Jorge, Luís Torgo, Pavel Brazdil, Rui Camacho, João Gama (Eds.): Knowledge Discovery in Databases: PKDD 2005, 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal, October 3-7, 2005, Proceedings. Lecture Notes in Computer Science 3721, Springer 2005, ISBN 3-540-29244-6- 2004
[j7]Ricardo Vilalta, Christophe G. Giraud-Carrier, Pavel Brazdil, Carlos Soares: Using Meta-Learning to Support Data Mining. IJCSA 1(1): 31-45 (2004)
[j6]Christophe G. Giraud-Carrier, Ricardo Vilalta, Pavel Brazdil: Introduction to the Special Issue on Meta-Learning. Machine Learning 54(3): 187-193 (2004)
[j5]Carlos Soares, Pavel Brazdil, Petr Kuba: A Meta-Learning Method to Select the Kernel Width in Support Vector Regression. Machine Learning 54(3): 195-209 (2004)
[c26]
[c25]
[c24]João Cordeiro, Pavel Brazdil: Learning Text Extraction Rules, without Ignoring Stop Words. PRIS 2004: 128-138- 2003
[j4]
[j3]Pavel Brazdil, Carlos Soares, Joaquim Pinto da Costa: Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results. Machine Learning 50(3): 251-277 (2003)
[c23]- 2002
[c22]Yonghong Peng, Peter A. Flach, Carlos Soares, Pavel Brazdil: Improved Dataset Characterisation for Meta-learning. Discovery Science 2002: 141-152
[c21]Carlos Soares, Pavel Brazdil: A Comparative Study of Some Issues Concerning Algorithm Recommendation Using Ranking Methods. IBERAMIA 2002: 80-89- 2001
[c20]Rui Camacho, Pavel Brazdil: Improving the Robustness and Encoding Complexity of Behavioural Clones. ECML 2001: 37-48
[c19]Pavel Brazdil, Carlos Soares, Rui Pereira: Reducing Rankings of Classifiers by Eliminating Redundant Classifiers. EPIA 2001: 14-21
[c18]Carlos Soares, Johann Petrak, Pavel Brazdil: Sampling-Based Relative Landmarks: Systematically Test-Driving Algorithms Before Choosing. EPIA 2001: 88-95
[c17]
[e2]Pavel Brazdil, Alípio Jorge (Eds.): Progress in Artificial Intelligence, Knowledge Extraction, Multi-agent Systems, Logic Programming and Constraint Solving, 10th Portuguese Conference on Artificial Intelligence, EPIA 2001, Porto, Portugal, December 17-20, 2001, Proceedings. Lecture Notes in Computer Science 2258, Springer 2001, ISBN 3-540-43030-X- 2000
[j2]
[c16]Pavel Brazdil, Carlos Soares: A Comparison of Ranking Methods for Classification Algorithm Selection. ECML 2000: 63-74
[c15]Carlos Soares, Pavel Brazdil: Zoomed Ranking: Selection of Classification Algorithms Based on Relevant Performance Information. PKDD 2000: 126-135
1990 – 1999
- 1999
[j1]- 1998
[c14]Alneu de Andrade Lopes, Pavel Brazdil: Redundant Covering with Global Evaluation in the RC1 Inductive Learner. SBIA 1998: 111-120- 1996
[c13]Alípio Jorge, Pavel Brazdil: Integrity Constraints in ILP Using a Monte Carlo Approach. Inductive Logic Programming Workshop 1996: 229-244- 1995
[c12]Alípio Jorge, Pavel Brazdil: Learning Recursion with Iterative Bootstrap Induction (Extended Abstract). ECML 1995: 299-302
[c11]- 1994
[c10]
[c9]Pavel Brazdil, Joao Gama, Bob Henery: Characterizing the Applicability of Classification Algorithms Using Meta-Level Learning. ECML 1994: 83-102- 1993
[e1]Pavel Brazdil (Ed.): Machine Learning: ECML-93, European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993, Proceedings. Lecture Notes in Computer Science 667, Springer 1993, ISBN 3-540-56602-3- 1992
[c8]Pavel Brazdil: Approaches to Inductive Logic Programming. Advanced Topics in Artificial Intelligence 1992: 139-160
[c7]Pavel Brazdil, Ivan Bruha: A Method of Processing Unknown Attribute Values by ID3. ICCI 1992: 253-256- 1991
[c6]Pavel Brazdil, Matjaz Gams, Sati S. Sian, Luís Torgo, Walter Van de Velde: Panel: Learning in Distributed Systems and Multi-Agent Environments. EWSL 1991: 412-423
[c5]Pavel Brazdil, Stephen Muggleton: Learning to Relate Terms in a Multiple Agent Environment. EWSL 1991: 424-439
1980 – 1989
- 1987
[c4]- 1984
[c3]
1970 – 1979
- 1978
[c2]- 1977
[c1]
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:08 CEST by the dblp team



