Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Michael Biehl
2010 – today
- 2013
[j26]Enrique Alegre, Michael Biehl, Nicolai Petkov, Lidia Sánchez: Assessment of acrosome state in boar spermatozoa heads using n-contours descriptor and RLVQ. Computer Methods and Programs in Biomedicine 111(3): 525-536 (2013)
[j25]Ioannis Giotis, Kerstin Bunte, Nicolai Petkov, Michael Biehl: Adaptive Matrices and Filters for Color Texture Classification. Journal of Mathematical Imaging and Vision 47(1-2): 79-92 (2013)- 2012
[j24]Markus B. Huber, Kerstin Bunte, Mahesh B. Nagarajan, Michael Biehl, Lawrence A. Ray, Axel Wismüller: Texture feature ranking with relevance learning to classify interstitial lung disease patterns. Artificial Intelligence in Medicine 56(2): 91-97 (2012)
[j23]Kerstin Bunte, Sven Haase, Michael Biehl, Thomas Villmann: Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences. Neurocomputing 90: 23-45 (2012)
[j22]Marika Kästner, Barbara Hammer, Michael Biehl, Thomas Villmann: Functional relevance learning in generalized learning vector quantization. Neurocomputing 90: 85-95 (2012)
[j21]Michael Biehl: Admire LVQ - Adaptive Distance Measures in Relevance Learning Vector Quantization. KI 26(4): 391-395 (2012)
[j20]Kerstin Bunte, Michael Biehl, Barbara Hammer: A General Framework for Dimensionality-Reducing Data Visualization Mapping. Neural Computation 24(3): 771-804 (2012)
[j19]Kerstin Bunte, Petra Schneider, Barbara Hammer, Frank-Michael Schleif, Thomas Villmann, Michael Biehl: Limited Rank Matrix Learning, discriminative dimension reduction and visualization. Neural Networks 26: 159-173 (2012)
[c36]Marika Kästner, David Nebel, Martin Riedel, Michael Biehl, Thomas Villmann: Differentiable Kernels in Generalized Matrix Learning Vector Quantization. ICMLA (1) 2012: 132-137
[c35]Michael Biehl, Kerstin Bunte, Frank-Michael Schleif, Petra Schneider, Thomas Villmann: Large margin linear discriminative visualization by Matrix Relevance Learning. IJCNN 2012: 1-8
[c34]Gabriele Peters, Kerstin Bunte, Marc Strickert, Michael Biehl, Thomas Villmann: Visualization of processes in self-learning systems. PST 2012: 244-249- 2011
[j18]Kerstin Bunte, Barbara Hammer, Thomas Villmann, Michael Biehl, Axel Wismüller: Neighbor embedding XOM for dimension reduction and visualization. Neurocomputing 74(9): 1340-1350 (2011)
[j17]Ernest Mwebaze, Petra Schneider, Frank-Michael Schleif, Jennifer R. Aduwo, John A. Quinn, Sven Haase, Thomas Villmann, Michael Biehl: Divergence-based classification in learning vector quantization. Neurocomputing 74(9): 1429-1435 (2011)
[j16]Kerstin Bunte, Michael Biehl, Marcel F. Jonkman, Nicolai Petkov: Learning effective color features for content based image retrieval in dermatology. Pattern Recognition 44(9): 1892-1902 (2011)
[c33]Kerstin Bunte, Ioannis Giotis, Nicolai Petkov, Michael Biehl: Adaptive Matrices for Color Texture Classification. CAIP (2) 2011: 489-497
[c32]
[c31]
[c30]Marika Kästner, Barbara Hammer, Michael Biehl, Thomas Villmann: Generalized functional relevance learning vector quantization. ESANN 2011
[c29]Ernest Mwebaze, John A. Quinn, Michael Biehl: Causal relevance learning for robust classification under interventions. ESANN 2011
[c28]
[c27]Petra Schneider, Tina Geweniger, Frank-Michael Schleif, Michael Biehl, Thomas Villmann: Multivariate class labeling in Robust Soft LVQ. ESANN 2011
[c26]Barbara Hammer, Michael Biehl, Kerstin Bunte, Bassam Mokbel: A General Framework for Dimensionality Reduction for Large Data Sets. WSOM 2011: 277-287
[i2]Wouter Lueks, Bassam Mokbel, Michael Biehl, Barbara Hammer: How to Evaluate Dimensionality Reduction? - Improving the Co-ranking Matrix. CoRR abs/1110.3917 (2011)
[i1]Michael Biehl, Barbara Hammer, Erzsébet Merényi, Alessandro Sperduti, Thomas Villmann: Learning in the context of very high dimensional data (Dagstuhl Seminar 11341). Dagstuhl Reports 1(8): 67-95 (2011)- 2010
[j15]Kerstin Bunte, Barbara Hammer, Axel Wismüller, Michael Biehl: Adaptive local dissimilarity measures for discriminative dimension reduction of labeled data. Neurocomputing 73(7-9): 1074-1092 (2010)
[j14]Petra Schneider, Michael Biehl, Barbara Hammer: Hyperparameter learning in probabilistic prototype-based models. Neurocomputing 73(7-9): 1117-1124 (2010)
[j13]Aree Witoelar, Anarta Ghosh, J. J. G. de Vries, Barbara Hammer, Michael Biehl: Window-Based Example Selection in Learning Vector Quantization. Neural Computation 22(11): 2924-2961 (2010)
[j12]Petra Schneider, Kerstin Bunte, Han Stiekema, Barbara Hammer, Thomas Villmann, Michael Biehl: Regularization in matrix relevance learning. IEEE Transactions on Neural Networks 21(5): 831-840 (2010)
[c25]Ot de Wiljes, Ronald A. J. van Elburg, Michael Biehl, Fred Keijzer: Early Nervous Systems - Theoretical Background and a Preliminary Model of Neuronal Processes. ALIFE 2010: 239-240
[c24]Thomas Villmann, Sven Haase, Frank-Michael Schleif, Barbara Hammer, Michael Biehl: The Mathematics of Divergence Based Online Learning in Vector Quantization. ANNPR 2010: 108-119
[c23]Kerstin Bunte, Barbara Hammer, Thomas Villmann, Michael Biehl, Axel Wismüller: Exploratory Observation Machine (XOM) with Kullback-Leibler Divergence for Dimensionality Reduction and Visualization. ESANN 2010
[c22]Ernest Mwebaze, Petra Schneider, Frank-Michael Schleif, Sven Haase, Thomas Villmann, Michael Biehl: Divergence based Learning Vector Quantization. ESANN 2010
[c21]Frank-Michael Schleif, Thomas Villmann, Barbara Hammer, Petra Schneider, Michael Biehl: Generalized Derivative Based Kernelized Learning Vector Quantization. IDEAL 2010: 21-28
2000 – 2009
- 2009
[j11]Frank-Michael Schleif, Michael Biehl, Alfredo Vellido: Advances in machine learning and computational intelligence. Neurocomputing 72(7-9): 1377-1378 (2009)
[j10]Aree Witoelar, Michael Biehl: Phase transitions in vector quantization and neural gas. Neurocomputing 72(7-9): 1390-1397 (2009)
[j9]Petra Schneider, Michael Biehl, Barbara Hammer: Distance Learning in Discriminative Vector Quantization. Neural Computation 21(10): 2942-2969 (2009)
[j8]Petra Schneider, Michael Biehl, Barbara Hammer: Adaptive Relevance Matrices in Learning Vector Quantization. Neural Computation 21(12): 3532-3561 (2009)
[c20]Kerstin Bunte, Barbara Hammer, Michael Biehl: Nonlinear Dimension Reduction and Visualization of Labeled Data. CAIP 2009: 1162-1170
[c19]Michael Biehl, Nestor Caticha, Peter Riegler: Statistical Mechanics of On-line Learning. Similarity-Based Clustering 2009: 1-22
[c18]Thomas Villmann, Barbara Hammer, Michael Biehl: Some Theoretical Aspects of the Neural Gas Vector Quantizer. Similarity-Based Clustering 2009: 23-34
[c17]Kerstin Bunte, Michael Biehl, Nicolai Petkov, Marcel F. Jonkman: Adaptive Metrics for Content Based Image Retrieval in Dermatology. ESANN 2009
[c16]Kerstin Bunte, Barbara Hammer, Petra Schneider, Michael Biehl: Nonlinear Discriminative Data Visualization. ESANN 2009
[c15]Petra Schneider, Michael Biehl, Barbara Hammer: Hyperparameter Learning in Robust Soft LVQ. ESANN 2009
[c14]
[c13]Marc Strickert, Jens Keilwagen, Frank-Michael Schleif, Thomas Villmann, Michael Biehl: Matrix Metric Adaptation Linear Discriminant Analysis of Biomedical Data. IWANN (1) 2009: 933-940
[p1]Michael Biehl, Barbara Hammer, Petra Schneider, Thomas Villmann: Metric Learning for Prototype-Based Classification. Innovations in Neural Information Paradigms and Applications 2009: 183-199
[e2]Michael Biehl, Barbara Hammer, Michel Verleysen, Thomas Villmann (Eds.): Similarity-Based Clustering, Recent Developments and Biomedical Applications [outcome of a Dagstuhl Seminar]. Lecture Notes in Computer Science 5400, Springer 2009, ISBN 978-3-642-01804-6- 2008
[j7]Enrique Alegre, Michael Biehl, Nicolai Petkov, Lidia Sánchez: Automatic classification of the acrosome status of boar spermatozoa using digital image processing and LVQ. Comp. in Bio. and Med. 38(4): 461-468 (2008)
[j6]Fabrice Rossi, Michael Biehl, Cecilio Angulo Bahón: Progress in modeling, theory, and application of computational intelligence. Neurocomputing 71(7-9): 1117-1119 (2008)
[j5]Aree Witoelar, Michael Biehl, Anarta Ghosh, Barbara Hammer: Learning dynamics and robustness of vector quantization and neural gas. Neurocomputing 71(7-9): 1210-1219 (2008)
[c12]Marc Strickert, Petra Schneider, Jens Keilwagen, Thomas Villmann, Michael Biehl, Barbara Hammer: Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics. ANNPR 2008: 78-89
[c11]Aree Witoelar, Anarta Ghosh, Michael Biehl: Phase transitions in Vector Quantization. ESANN 2008: 221-226
[c10]Petra Schneider, Frank-Michael Schleif, Thomas Villmann, Michael Biehl: Generalized matrix learning vector quantizer for the analysis of spectral data. ESANN 2008: 451-456- 2007
[j4]Michael Biehl, Erzsébet Merényi, Fabrice Rossi: Advances in computational intelligence and learning. Neurocomputing 70(7-9): 1117-1119 (2007)
[j3]Michael Biehl, Anarta Ghosh, Barbara Hammer: Dynamics and Generalization Ability of LVQ Algorithms. Journal of Machine Learning Research 8: 323-360 (2007)
[c9]Michael Biehl, Barbara Hammer, Michel Verleysen, Thomas Villmann: 07131 Summary -- Similarity-based Clustering and its Application to Medicine and Biology. Similarity-based Clustering and its Application to Medicine and Biology 2007
[c8]Michael Biehl, Barbara Hammer, Michel Verleysen, Thomas Villmann: 07131 Abstracts Collection -- Similarity-based Clustering and its Application to Medicine and Biology. Similarity-based Clustering and its Application to Medicine and Biology 2007
[c7]Aree Witoelar, Michael Biehl, Barbara Hammer: Learning Vector Quantization: generalization ability and dynamics of competing prototypes. Similarity-based Clustering and its Application to Medicine and Biology 2007
[c6]
[c5]Aree Witoelar, Michael Biehl, Anarta Ghosh, Barbara Hammer: On the dynamics of Vector Quantization and Neural Gas. ESANN 2007: 127-132
[c4]Michael Biehl, Rainer Breitling, Yang Li: Analysis of Tiling Microarray Data by Learning Vector Quantization and Relevance Learning. IDEAL 2007: 880-889
[e1]Michael Biehl, Barbara Hammer, Michel Verleysen, Thomas Villmann (Eds.): Similarity-based Clustering and its Application to Medicine and Biology, 25.03. - 30.03.2007. Dagstuhl Seminar Proceedings 07131, Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany 2007- 2006
[j2]Michael Biehl, Anarta Ghosh, Barbara Hammer: Learning vector quantization: The dynamics of winner-takes-all algorithms. Neurocomputing 69(7-9): 660-670 (2006)
[j1]Anarta Ghosh, Michael Biehl, Barbara Hammer: Performance analysis of LVQ algorithms: A statistical physics approach. Neural Networks 19(6-7): 817-829 (2006)
[c3]Michael Biehl, Piter Pasma, Marten Pijl, Lidia Sánchez, Nicolai Petkov: Classification of Boar Sperm Head Images using Learning Vector Quantization. ESANN 2006: 545-550- 2005
[c2]Michael Biehl, Anarta Ghosh, Barbara Hammer: The dynamics of Learning Vector Quantization. ESANN 2005: 13-18- 2002
[c1]Christoph Bunzmann, Michael Biehl, Robert Urbanczik: Supervised learning in committee machines by PCA. ESANN 2002: 125-130
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:10 CEST by the dblp team



