Please note: This is a beta version of the new dblp website.
You can find the classic dblp view of this page here.
You can find the classic dblp view of this page here.
Ira Assent
2010 – today
- 2013
[c41]
[c40]Matteo Magnani, Ira Assent: From stars to galaxies: skyline queries on aggregate data. EDBT 2013: 477-488
[c39]Xuan Hong Dang, Barbora Micenková, Ira Assent, Raymond T. Ng: Local Outlier Detection with Interpretation. ECML/PKDD (3) 2013: 304-320
[c38]Ira Assent, Xuan Hong Dang, Barbora Micenková, Raymond T. Ng: Outlier Detection with Space Transformation and Spectral Analysis. SDM 2013: 225-233
[e3]Ira Assent, Carlotta Domeniconi, Francesco Gullo, Andrea Tagarelli, Arthur Zimek (Eds.): Proceedings of the 4th MultiClust Workshop on Multiple Clusterings, Multi-view Data, and Multi-source Knowledge-driven Clustering, in conjunction with KDD 2013, Chicago, IL, USA, August 11, 2013. ACM 2013, ISBN 978-1-4503-2334-5- 2012
[j13]Philipp Kranen, Ira Assent, Thomas Seidl: An Index-Inspired Algorithm for Anytime Classification on Evolving Data Streams. Datenbank-Spektrum 12(1): 43-50 (2012)
[j12]Man Lung Yiu, Ira Assent, Christian S. Jensen, Panos Kalnis: Outsourced Similarity Search on Metric Data Assets. IEEE Trans. Knowl. Data Eng. 24(2): 338-352 (2012)
[j11]Ira Assent: Clustering high dimensional data. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 2(4): 340-350 (2012)
[c37]Ira Assent, Philipp Kranen, Corinna Baldauf, Thomas Seidl: AnyOut: Anytime Outlier Detection on Streaming Data. DASFAA (1) 2012: 228-242
[c36]Emmanuel Müller, Ira Assent, Patricia Iglesias Sanchez, Yvonne Mülle, Klemens Böhm: Outlier Ranking via Subspace Analysis in Multiple Views of the Data. ICDM 2012: 529-538- 2011
[j10]Philipp Kranen, Ira Assent, Corinna Baldauf, Thomas Seidl: The ClusTree: indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst. 29(2): 249-272 (2011)
[c35]Emmanuel Müller, Ira Assent, Stephan Günnemann, Patrick Gerwert, Matthias Hannen, Timm Jansen, Thomas Seidl: A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases. BTW 2011: 347-366
[c34]Emmanuel Müller, Ira Assent, Stephan Günnemann, Thomas Seidl: Scalable density-based subspace clustering. CIKM 2011: 1077-1086
[c33]Stephan Günnemann, Ines Färber, Emmanuel Müller, Ira Assent, Thomas Seidl: External evaluation measures for subspace clustering. CIKM 2011: 1363-1372
[c32]Nguyen Hoang Vu, Vivekanand Gopalkrishnan, Ira Assent: An Unbiased Distance-Based Outlier Detection Approach for High-Dimensional Data. DASFAA (1) 2011: 138-152
[c31]Carmen Ruiz Vicente, Ira Assent, Christian S. Jensen: Effective Privacy-Preserving Online Route Planning. Mobile Data Management (1) 2011: 119-128
[c30]Christian Beecks, Ira Assent, Thomas Seidl: Content-Based Multimedia Retrieval in the Presence of Unknown User Preferences. MMM (1) 2011: 140-150
[c29]Hardy Kremer, Stephan Günnemann, Anca Maria Ivanescu, Ira Assent, Thomas Seidl: Efficient Processing of Multiple DTW Queries in Time Series Databases. SSDBM 2011: 150-167
[e2]Emmanuel Müller, Stephan Günnemann, Ira Assent, Thomas Seidl (Eds.): Proceedings of the 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings, Athens, Greece, September 5, 2011, in conjunction with ECML/PKDD 2011. CEUR Workshop Proceedings 772, CEUR-WS.org 2011- 2010
[j9]Ira Assent: Effiziente Ähnlichkeitssuche und Data Mining in großen Multimediadatenbanken (Efficient Adaptive Retrieval and Mining in Large Multimedia Databases). it - Information Technology 52(1): 45-47 (2010)
[c28]Ira Assent, Hardy Kremer, Thomas Seidl: Speeding Up Complex Video Copy Detection Queries. DASFAA (1) 2010: 307-321
[c27]Ira Assent, Hardy Kremer, Stephan Günnemann, Thomas Seidl: Pattern detector: fast detection of suspicious stream patterns for immediate reaction. EDBT 2010: 709-712
[c26]Ira Assent: Mining and representing recommendations in actively evolving recommender systems. ICDE Workshops 2010: 282-285
2000 – 2009
- 2009
[j8]Ira Assent, Marc Wichterich, Ralph Krieger, Hardy Kremer, Thomas Seidl: Anticipatory DTW for Efficient Similarity Search in Time Series Databases. PVLDB 2(1): 826-837 (2009)
[j7]Emmanuel Müller, Stephan Günnemann, Ira Assent, Thomas Seidl: Evaluating Clustering in Subspace Projections of High Dimensional Data. PVLDB 2(1): 1270-1281 (2009)
[c25]Ira Assent, Stephan Günnemann, Hardy Kremer, Thomas Seidl: High-Dimensional Indexing for Multimedia Features. BTW 2009: 187-206
[c24]Ira Assent: Efficient Adaptive Retrieval and Mining in Large Multimedia Databases. BTW 2009: 428-437
[c23]Thomas Seidl, Ira Assent, Philipp Kranen, Ralph Krieger, Jennifer Herrmann: Indexing density models for incremental learning and anytime classification on data streams. EDBT 2009: 311-322
[c22]Ira Assent: Actively Building Private Recommender Networks for Evolving Reliable Relationships. ICDE 2009: 1611-1614
[c21]Philipp Kranen, Ira Assent, Corinna Baldauf, Thomas Seidl: Self-Adaptive Anytime Stream Clustering. ICDM 2009: 249-258
[c20]Emmanuel Müller, Ira Assent, Stephan Günnemann, Ralph Krieger, Thomas Seidl: Relevant Subspace Clustering: Mining the Most Interesting Non-redundant Concepts in High Dimensional Data. ICDM 2009: 377-386
[c19]Emmanuel Müller, Ira Assent, Ralph Krieger, Stephan Günnemann, Thomas Seidl: DensEst: Density Estimation for Data Mining in High Dimensional Spaces. SDM 2009: 173-184
[c18]
[c17]Emmanuel Müller, Ira Assent, Thomas Seidl: HSM: Heterogeneous Subspace Mining in High Dimensional Data. SSDBM 2009: 497-516
[e1]Nikos Mamoulis, Thomas Seidl, Torben Bach Pedersen, Kristian Torp, Ira Assent (Eds.): Advances in Spatial and Temporal Databases, 11th International Symposium, SSTD 2009, Aalborg, Denmark, July 8-10, 2009, Proceedings. Lecture Notes in Computer Science 5644, Springer 2009, ISBN 978-3-642-02981-3- 2008
[b1]Ira Assent: Efficient adaptive retrieval and mining in large multimedia databases. RWTH Aachen University 2008, pp. 1-247
[j6]David Ruau, Corinna Kolárik, Heinz-Theodor Mevissen, Emmanuel Müller, Ira Assent, Ralph Krieger, Thomas Seidl, Martin Hofmann-Apitius, Martin Zenke: Public microarray repository semantic annotation with ontologies employing text mining and expression profile correlation. BMC Bioinformatics 9(S-10) (2008)
[j5]Ira Assent, Ralph Krieger, Boris Glavic, Thomas Seidl: Clustering multidimensional sequences in spatial and temporal databases. Knowl. Inf. Syst. 16(1): 29-51 (2008)
[c16]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl: EDSC: efficient density-based subspace clustering. CIKM 2008: 1093-1102
[c15]Ira Assent, Ralph Krieger, Farzad Afschari, Thomas Seidl: The TS-tree: efficient time series search and retrieval. EDBT 2008: 252-263
[c14]Ira Assent, Marc Wichterich, Tobias Meisen, Thomas Seidl: Efficient similarity search using the Earth Mover's Distance for large multimedia databases. ICDE 2008: 307-316
[c13]Emmanuel Müller, Ira Assent, Uwe Steinhausen, Thomas Seidl: OutRank: ranking outliers in high dimensional data. ICDE Workshops 2008: 600-603
[c12]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl: INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy. ICDM 2008: 719-724
[c11]Emmanuel Müller, Ira Assent, Ralph Krieger, Timm Jansen, Thomas Seidl: Morpheus: interactive exploration of subspace clustering. KDD 2008: 1089-1092
[c10]Ira Assent, Ralph Krieger, Petra Welter, Jörg Herbers, Thomas Seidl: SubClass: Classification of Multidimensional Noisy Data Using Subspace Clusters. PAKDD 2008: 40-52
[c9]Ira Assent, Emmanuel Müller, Ralph Krieger, Timm Jansen, Thomas Seidl: Pleiades: Subspace Clustering and Evaluation. ECML/PKDD (2) 2008: 666-671
[c8]Marc Wichterich, Ira Assent, Philipp Kranen, Thomas Seidl: Efficient EMD-based similarity search in multimedia databases via flexible dimensionality reduction. SIGMOD Conference 2008: 199-212- 2007
[j4]Mohammed J. Zaki, Markus Peters, Ira Assent, Thomas Seidl: Clicks: An effective algorithm for mining subspace clusters in categorical datasets. Data Knowl. Eng. 60(1): 51-70 (2007)
[j3]Ira Assent, Sebastian Seibert: An upper bound for transforming self-verifying automata into deterministic ones. ITA 41(3): 261-265 (2007)
[j2]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl: VISA: visual subspace clustering analysis. SIGKDD Explorations 9(2): 5-12 (2007)
[c7]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl: Subspace outlier mining in large multimedia databases. Parallel Universes and Local Patterns 2007
[c6]Ira Assent, Ralph Krieger, Thomas Seidl: AttentionAttractor: efficient video stream similarity query processing in real time. ICDE 2007: 1509-1510
[c5]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl: DUSC: Dimensionality Unbiased Subspace Clustering. ICDM 2007: 409-414- 2006
[j1]Ira Assent, Marc Wichterich, Thomas Seidl: Adaptable Distance Functions for Similarity-based Multimedia Retrieval. Datenbank-Spektrum 19: 23-31 (2006)
[c4]Ira Assent, Thomas Seidl: Efficient multi-step query processing for EMD-based similarity. Content-Based Retrieval 2006
[c3]Ira Assent, Andrea Wenning, Thomas Seidl: Approximation Techniques for Indexing the Earth Mover's Distance in Multimedia Databases. ICDE 2006: 11
[c2]Ira Assent, Ralph Krieger, Boris Glavic, Thomas Seidl: Spatial Multidimensional Sequence Clustering. ICDM Workshops 2006: 343-348- 2005
[c1]Mohammed Javeed Zaki, Markus Peters, Ira Assent, Thomas Seidl: CLICKS: an effective algorithm for mining subspace clusters in categorical datasets. KDD 2005: 736-742
Coauthor Index
data released under the ODC-BY 1.0 license. See also our legal information page
last updated on 2013-10-02 11:21 CEST by the dblp team



