24. ICML 2007: Corvalis, Oregon, USA
Zoubin Ghahramani (Ed.): Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007. ACM 2007 ACM International Conference Proceeding Series 227 ISBN 978-1-59593-793-3

Yonatan Amit, Michael Fink, Nathan Srebro, Shimon Ullman: Uncovering shared structures in multiclass classification. 17-24


Arik Azran: The rendezvous algorithm: multiclass semi-supervised learning with Markov random walks. 49-56
Rashmin Babaria, J. Saketha Nath, S. Krishnan, K. R. Sivaramakrishnan, Chiranjib Bhattacharyya, M. Narasimha Murty: Focused crawling with scalable ordinal regression solvers. 57-64
Sourangshu Bhattacharya, Chiranjib Bhattacharyya, Nagasuma Chandra: Structural alignment based kernels for protein structure classification. 73-80
Steffen Bickel, Michael Brückner, Tobias Scheffer: Discriminative learning for differing training and test distributions. 81-88
Antoine Bordes, Léon Bottou, Patrick Gallinari, Jason Weston: Solving multiclass support vector machines with LaRank. 89-96
Brent Bryan, H. Brendan McMahan, Chad M. Schafer, Jeff G. Schneider: Efficiently computing minimax expected-size confidence regions. 97-104
Ludwig M. Busse, Peter Orbanz, Joachim M. Buhmann: Cluster analysis of heterogeneous rank data. 113-120
Bin Cao, Dou Shen, Jian-Tao Sun, Qiang Yang, Zheng Chen: Feature selection in a kernel space. 121-128
Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, Hang Li: Learning to rank: from pairwise approach to listwise approach. 129-136
Antoni B. Chan, Nuno Vasconcelos, Gert R. G. Lanckriet: Direct convex relaxations of sparse SVM. 145-153
Xue-wen Chen, Jong Cheol Jeong: Minimum reference set based feature selection for small sample classifications. 153-160

Alexandre d'Aspremont, Francis R. Bach, Laurent El Ghaoui: Full regularization path for sparse principal component analysis. 177-184


Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, Inderjit S. Dhillon: Information-theoretic metric learning. 209-216
Jesse Davis, Vítor Santos Costa, Soumya Ray, David Page: An integrated approach to feature invention and model construction for drug activity prediction. 217-224
Erick Delage, Shie Mannor: Percentile optimization in uncertain Markov decision processes with application to efficient exploration. 225-232
Laura Dietz, Steffen Bickel, Tobias Scheffer: Unsupervised prediction of citation influences. 233-240
Piotr Dollár, Vincent Rabaud, Serge J. Belongie: Non-isometric manifold learning: analysis and an algorithm. 241-248
Miroslav Dudík, David M. Blei, Robert E. Schapire: Hierarchical maximum entropy density estimation. 249-256
Roberto Esposito, Daniele P. Radicioni: CarpeDiem: an algorithm for the fast evaluation of SSL classifiers. 257-264
Amir Massoud Farahmand, Csaba Szepesvári, Jean-Yves Audibert: Manifold-adaptive dimension estimation. 265-272
Samuel Gerber, Tolga Tasdizen, Ross T. Whitaker: Robust non-linear dimensionality reduction using successive 1-dimensional Laplacian Eigenmaps. 281-288
Pierre Geurts, Louis Wehenkel, Florence d'Alché-Buc: Gradient boosting for kernelized output spaces. 289-296
Amir Globerson, Terry Koo, Xavier Carreras, Michael Collins: Exponentiated gradient algorithms for log-linear structured prediction. 305-312
Nizar Grira, Michael E. Houle: Best of both: a hybridized centroid-medoid clustering heuristic. 313-320
Fan Guo, Steve Hanneke, Wenjie Fu, Eric P. Xing: Recovering temporally rewiring networks: a model-based approach. 321-328
Rahul Gupta, Ajit A. Diwan, Sunita Sarawagi: Efficient inference with cardinality-based clique potentials. 329-336
Peter Haider, Ulf Brefeld, Tobias Scheffer: Supervised clustering of streaming data for email batch detection. 345-352
Steve Hanneke: A bound on the label complexity of agnostic active learning. 353-360
Steven C. H. Hoi, Rong Jin, Michael R. Lyu: Learning nonparametric kernel matrices from pairwise constraints. 361-368
Manfred Jaeger: Parameter learning for relational Bayesian networks. 369-376
Jeffrey Johns, Sridhar Mahadevan: Constructing basis functions from directed graphs for value function approximation. 385-392
Kristian Kersting, Christian Plagemann, Patrick Pfaff, Wolfram Burgard: Most likely heteroscedastic Gaussian process regression. 393-400
Kye-Hyeon Kim, Seungjin Choi: Neighbor search with global geometry: a minimax message passing algorithm. 401-408



Nicole Krämer, Mikio L. Braun: Kernelizing PLS, degrees of freedom, and efficient model selection. 441-448
Andreas Krause, Carlos Guestrin: Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach. 449-456
Dmitry Kropotov, Dmitry Vetrov: On one method of non-diagonal regularization in sparse Bayesian learning. 457-464
Hugo Larochelle, Dumitru Erhan, Aaron C. Courville, James Bergstra, Yoshua Bengio: An empirical evaluation of deep architectures on problems with many factors of variation. 473-480
Su-In Lee, Vassil Chatalbashev, David Vickrey, Daphne Koller: Learning a meta-level prior for feature relevance from multiple related tasks. 489-496
Jure Leskovec, Christos Faloutsos: Scalable modeling of real graphs using Kronecker multiplication. 497-504

Chris H. Q. Ding, Tao Li: Adaptive dimension reduction using discriminant analysis and K-means clustering. 521-528
Xin Li, William Kwok-Wai Cheung, Jiming Liu, Zhili Wu: A novel orthogonal NMF-based belief compression for POMDPs. 537-544
Percy Liang, Michael I. Jordan, Benjamin Taskar: A permutation-augmented sampler for DP mixture models. 545-552
Xuejun Liao, Hui Li, Lawrence Carin: Quadratically gated mixture of experts for incomplete data classification. 553-560
Chih-Jen Lin, Ruby C. Weng, S. Sathiya Keerthi: Trust region Newton methods for large-scale logistic regression. 561-568
Bo Long, Zhongfei (Mark) Zhang, Xiaoyun Wu, Philip S. Yu: Relational clustering by symmetric convex coding. 569-576
Yong Ma, Shihong Lao, Erina Takikawa, Masato Kawade: Discriminant analysis in correlation similarity measure space. 577-584
Sridhar Mahadevan: Adaptive mesh compression in 3D computer graphics using multiscale manifold learning. 585-592
Gideon S. Mann, Andrew McCallum: Simple, robust, scalable semi-supervised learning via expectation regularization. 593-600
Bhaskara Marthi: Automatic shaping and decomposition of reward functions. 601-608
Graham McNeill, Sethu Vijayakumar: Linear and nonlinear generative probabilistic class models for shape contours. 617-624
David M. Mimno, Wei Li, Andrew McCallum: Mixtures of hierarchical topics with Pachinko allocation. 633-640
Andriy Mnih, Geoffrey E. Hinton: Three new graphical models for statistical language modelling. 641-648
Alessandro Moschitti, Fabio Massimo Zanzotto: Fast and effective kernels for relational learning from texts. 649-656
Sofia Mosci, Lorenzo Rosasco, Alessandro Verri: Dimensionality reduction and generalization. 657-664
Markos Mylonakis, Khalil Sima'an, Rebecca Hwa: Unsupervised estimation for noisy-channel models. 665-672
Blaine Nelson, Ira Cohen: Revisiting probabilistic models for clustering with pair-wise constraints. 673-680
Kai Ni, Lawrence Carin, David B. Dunson: Multi-task learning for sequential data via iHMMs and the nested Dirichlet process. 689-696
Jens Nilsson, Fei Sha, Michael I. Jordan: Regression on manifolds using kernel dimension reduction. 697-704
Sarah Osentoski, Sridhar Mahadevan: Learning state-action basis functions for hierarchical MDPs. 705-712
A. P. Yogananda, M. Narasimha Murty, Lakshmi Gopal: A fast linear separability test by projection of positive points on subspaces. 713-720
Sandeep Pandey, Deepayan Chakrabarti, Deepak Agarwal: Multi-armed bandit problems with dependent arms. 721-728
Charles Parker, Alan Fern, Prasad Tadepalli: Learning for efficient retrieval of structured data with noisy queries. 729-736
Ronald Parr, Christopher Painter-Wakefield, Lihong Li, Michael L. Littman: Analyzing feature generation for value-function approximation. 737-744
Jan Peters, Stefan Schaal: Reinforcement learning by reward-weighted regression for operational space control. 745-750
Chee Wee Phua, Robert Fitch: Tracking value function dynamics to improve reinforcement learning with piecewise linear function approximation. 751-758
Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, Andrew Y. Ng: Self-taught learning: transfer learning from unlabeled data. 759-766
Alexander Rakhlin, Jacob Abernethy, Peter L. Bartlett: Online discovery of similarity mappings. 767-774
Alain Rakotomamonjy, Francis Bach, Stéphane Canu, Yves Grandvalet: More efficiency in multiple kernel learning. 775-782
Matthew J. Rattigan, Marc E. Maier, David Jensen: Graph clustering with network structure indices. 783-790
Ruslan Salakhutdinov, Andriy Mnih, Geoffrey E. Hinton: Restricted Boltzmann machines for collaborative filtering. 791-798
Mohak Shah: Sample compression bounds for decision trees. 799-806
Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro: Pegasos: Primal Estimated sub-GrAdient SOlver for SVM. 807-814
Le Song, Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt: A dependence maximization view of clustering. 815-822
Le Song, Alex J. Smola, Arthur Gretton, Karsten M. Borgwardt, Justin Bedo: Supervised feature selection via dependence estimation. 823-830
Bharath K. Sriperumbudur, David A. Torres, Gert R. G. Lanckriet: Sparse eigen methods by D.C. programming. 831-838
Jianyong Sun, Ata Kabán, Somak Raychaudhury: Robust mixtures in the presence of measurement errors. 847-854
Xiaohai Sun, Dominik Janzing, Bernhard Schölkopf, Kenji Fukumizu: A kernel-based causal learning algorithm. 855-862
Charles A. Sutton, Andrew McCallum: Piecewise pseudolikelihood for efficient training of conditional random fields. 863-870
Richard S. Sutton, Anna Koop, David Silver: On the role of tracking in stationary environments. 871-878


Petroula Tsampouka, John Shawe-Taylor: Approximate maximum margin algorithms with rules controlled by the number of mistakes. 903-910
Ivor W. Tsang, András Kocsor, James T. Kwok: Simpler core vector machines with enclosing balls. 911-918
Koji Tsuda: Entire regularization paths for graph data. 919-926
Raquel Urtasun, Trevor Darrell: Discriminative Gaussian process latent variable model for classification. 927-934
Jason Van Hulse, Taghi M. Khoshgoftaar, Amri Napolitano: Experimental perspectives on learning from imbalanced data. 935-942
Gabriel Wachman, Roni Khardon: Learning from interpretations: a rooted kernel for ordered hypergraphs. 943-950
Gang Wang, Dit-Yan Yeung, Frederick H. Lochovsky: A kernel path algorithm for support vector machines. 951-958
Hua-Yan Wang, Hongbin Zha, Hong Qin: Dirichlet aggregation: unsupervised learning towards an optimal metric for proportional data. 959-966
Huan Wang, Shuicheng Yan, Thomas S. Huang, Jianzhuang Liu, Xiaoou Tang: Transductive regression piloted by inter-manifold relations. 967-974
Jack M. Wang, David J. Fleet, Aaron Hertzmann: Multifactor Gaussian process models for style-content separation. 975-982

Manfred K. Warmuth: Winnowing subspaces. 999-1006
Tomás Werner: What is decreased by the max-sum arc consistency algorithm? 1007-1014
Aaron Wilson, Alan Fern, Soumya Ray, Prasad Tadepalli: Multi-task reinforcement learning: a hierarchical Bayesian approach. 1015-1022
Adam Woznica, Alexandros Kalousis, Melanie Hilario: Learning to combine distances for complex representations. 1031-1038

Xiang Xuan, Kevin P. Murphy: Modeling changing dependency structure in multivariate time series. 1055-1062
Ya Xue, David B. Dunson, Lawrence Carin: The matrix stick-breaking process for flexible multi-task learning. 1063-1070
Takehisa Yairi: Map building without localization by dimensionality reduction techniques. 1071-1078
Keisuke Yamazaki, Motoaki Kawanabe, Sumio Watanabe, Masashi Sugiyama, Klaus-Robert Müller: Asymptotic Bayesian generalization error when training and test distributions are different. 1079-1086
Jieping Ye: Least squares linear discriminant analysis. 1087-1093
Jieping Ye, Jianhui Chen, Shuiwang Ji: Discriminant kernel and regularization parameter learning via semidefinite programming. 1095-1102
Jian Zhang, Rong Yan: On the value of pairwise constraints in classification and consistency. 1111-1118
Kun Zhang, Laiwan Chan: Nonlinear independent component analysis with minimal nonlinear distortion. 1127-1134
Wei Zhang, Xiangyang Xue, Zichen Sun, Yue-Fei Guo, Hong Lu: Optimal dimensionality of metric space for classification. 1135-1142
Xinhua Zhang, Douglas Aberdeen, S. V. N. Vishwanathan: Conditional random fields for multi-agent reinforcement learning. 1143-1150
Zheng Zhao, Huan Liu: Spectral feature selection for supervised and unsupervised learning. 1151-1157
Dengyong Zhou, Christopher J. C. Burges: Spectral clustering and transductive learning with multiple views. 1159-1166
Zhi-Hua Zhou, Jun-Ming Xu: On the relation between multi-instance learning and semi-supervised learning. 1167-1174
Jun Zhu, Zaiqing Nie, Bo Zhang, Ji-Rong Wen: Dynamic hierarchical Markov random fields and their application to web data extraction. 1175-1182
Alexander Zien, Ulf Brefeld, Tobias Scheffer: Transductive support vector machines for structured variables. 1183-1190



